FRAUD DETECTION AUTOMATION THROUGH DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE
Abstract
This study aims to review the use of data analytics and artificial intelligence in fraud detection to support internal audits. This study employs a qualitative method with a scoping review approach. The research data comprised 24 online journal articles indexed by Scopus and Sinta, which were used as the basis for scoping reviews. The stages carried out in this study consisted of identifying research questions, using keywords, selecting literature, mapping the results of research data, and compiling a summary of research results. This study concludes that the fraud detection model based on data analytics and artificial intelligence has a high accuracy value in improving audit quality. This study indicates that the Indonesian Financial and Development Supervisory Agency needs to increase the use of technology, including data analytics and artificial intelligence, to detect fraud optimally.
Downloads
References
ACFE. (2020). Report to The Nations on Occupational Fraud and Abuse: 2020 Global Fraud Study. https://acfepublic.s3-us-west-2.amazonaws.com/2020-Report-to-the-Nations.pdf
ACFE. (2022). Occupational Fraud 2022: A Report to The Nations. https://acfepublic.s3.us-west-2.amazonaws.com/2022+Report+to+the+Nations.pdf
ACFE Indonesia. (2020). Indonesian Fraud Survey 2019. https://acfe-indonesia.or.id/wp-content/uploads/2021/02/SURVEI-FRAUD-INDONESIA-2019.pdf
Albizri, A., Appelbaum, D., & Rizzotto, N. (2019). Evaluation of Financial Statements Fraud Detection Research: A Multi-Disciplinary Analysis. International Journal of Disclosure and Governance, 16(4), 206–241. https://doi.org/10.1057/s41310-019-00067-9
Alghofaili, Y., Albattah, A., & Rassam, M. A. (2020). A Financial Fraud Detection Model Based on LSTM Deep Learning Technique. Journal of Applied Security Research, 15(4), 498–516. https://doi.org/10.1080/19361610.2020.1815491
Arksey, H., & Malley, L. O. (2005). Scoping Studies: Towards A Methodological Framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
Bao, Y., Ke, Bi., Li, B., Yu, Y. J., & Zhang, J. (2020). Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach. Journal of Accounting Research, 58(1), 199–235. https://doi.org/10.1111/1475-679X.12292
Button, M., Lewis, C., & Tapley, J. (2009). Fraud typologies and victims of fraud. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/118469/fraud-typologies.pdf
Chen, J., Tao, Y., Wang, H., & Chen, T. (2015). Big Data Based Fraud Risk Management at Alibaba. Journal of Finance and Data Science, 1(1), 1–10. https://doi.org/10.1016/j.jfds.2015.03.001
Craja, P., Kim, A., & Lessmann, S. (2020). Deep Learning For Detecting Financial Statement Fraud. Decision Support Systems, 139, 113421. https://doi.org/10.1016/j.dss.2020.113421
Dhieb, N., Ghazzai, H., Besbes, H., & Massoud, Y. (2020). A Secure AI-Driven Architecture for Automated Insurance Systems: Fraud Detection and Risk Measurement. IEEE Access, 8, 58546–58558. https://doi.org/10.1109/ACCESS.2020.2983300
Dong, W., Liao, S., & Zhang, Z. (2018). Leveraging Financial Social Media Data for Corporate Fraud Detection. Journal of Management Information Systems, 35(2), 461–487. https://doi.org/10.1080/07421222.2018.1451954
Fonna, N. (2019). Development of the Industrial Revolution 4.0 in Various Fields. Bogor: Guepedia.
Fortress, H. (2020). The Effect of Using Big Data Analytics on The Work of Auditors [Universitas Katolik Parahyangan]. https://repository.unpar.ac.id/handle/123456789/11669
Goel, S., Gangolly, J., Faerman, S. R., & Uzuner, O. (2010). Can Linguistic Predictors Detect Fraudulent Financial Filings? Journal of Emerging Technologies in Accounting, 7(1), 25–46. https://doi.org/10.2308/jeta.2010.7.1.25
Goel, S., & Uzuner, O. (2016). Do Sentiments Matter in Fraud Detection? Estimating Semantic Orientation of Annual Reports. Intelligent Systems in Accounting, Finance and Management, 23(3), 215–239. https://doi.org/10.1002/isaf.1392
Hakami, T. A., Rahmat, M. M., Yaacob, M. H., & Saleh, N. M. (2020). Fraud Detection Gap between Auditor and Fraud Detection Models: Evidence from Gulf Cooperation Council. Asian Journal of Accounting and Governance, 13, 1–13. https://doi.org/10.17576/ajag-2020-13-01
Handoko, B. L., Mulyawan, A. N., Tanuwijaya, J., & Tanciady, F. (2020). Big Data in Auditing for Tthe Future of Data Driven Fraud Detection. International Journal of Innovative Technology and Exploring Engineering, 9(3), 2902–2907. https://doi.org/10.35940/ijitee.b7568.019320
Jan, C. (2018). An Effective Financial Statements Fraud Detection Model for the Sustainable Development of Financial Markets: Evidence from Taiwan. Sustainability, 10(2), 513. https://doi.org/10.3390/su10020513
Kovanen, A. (2020). Risks of Intelligent Automation and Their Impact on Internal Audit [Tampere University]. https://trepo.tuni.fi/handle/10024/121440
Kurniawati, G. N. (2020). Big Data Analytics and Its Uses for Your Business Development. DO Lab. https://www.dqlab.id/big-data-analytics-dan-kegunaannya-untuk-perkembangan-bisnis
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A Proposal for The Dartmouth Summer Research Project on Artificial Intelligence. 1–13. http://jmc.stanford.edu/articles/dartmouth/dartmouth.pdf
Muawanah, A., Adawiyah, D., Maisarah, I., Ali, M. R. A., & Widiastuti, N. P. E. (2022). Auditor Behavior Responding to the Emergence of Artificial Intelligence in the Audit Process. Jurnal Publikasi Ekonomi Dan Akuntansi …, 2(1), 52–60. http://ejurnal.stie-trianandra.ac.id/index.php/jupea/article/view/152
Mui, G. Y. (2018). Defining Auditor Expertise in Fraud Detection. Journal of Forensic and Investigative Accounting, 10(2), 168–186. https://s3.amazonaws.com/web.nacva.com/JFIA/Issues/JFIA-2018-No2-2.pdf
Mustika, N. I., Nenda, B., & Ramadhan, D. (2021). Machine Learning Algorithms in Fraud Detection: Case Study on Retail Consumer Financing Company. Asia Pacific Fraud Journal, 6(2), 213–221. https://doi.org/10.21532/apfjournal.v6i2.216
Naqvi, A. (2020). Artificial Intelligence for Audit, Forensic Accounting, and Valuation. New Jersey: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119601906
Oracle.com. (2022). What is Big Data? Oracle Cloud Infrastructure (OCI). https://www.oracle.com/big-data/what-is-big-data/
Pamungkas, U. D., & Firmansyah, A. (2021). How is The Regulation of Cryptocurrency Ownership by Companies Based on Financial Accounting Standards? Jurnal Ilmiah Akuntansi Kesatuan, 9(3), 489–510. https://doi.org/10.37641/jiakes.v9i3.895
Patil, S., Nemade, V., & Soni, P. K. (2018). Predictive Modelling for Credit Card Fraud Detection Using Data Analytics. Procedia Computer Science, 132, 385–395. https://doi.org/10.1016/j.procs.2018.05.199
Raj, S. B. E., & Portia, A. A. (2011). Analysis on Credit Card Fraud Detection Methods. 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), 152–156. https://doi.org/10.1109/ICCCET.2011.5762457
Richardson, V., Terrell, K., & Teeter, R. (2020). Data Analytics for Accounting (2nd ed.). New York: McGraw-Hill. https://www.amazon.com/Data-Analytics-Accounting-Vernon-Richardson/dp/1260837831
Rizki, A. A., Surjandari, I., & Wayasti, R. A. (2017). Data Mining Application to Detect Financial Fraud in Indonesia’s Public Companies. 2017 3rd International Conference on Science in Information Technology (ICSITech), 206–211. https://doi.org/10.1109/ICSITech.2017.8257111
Roy, R., & George, K. T. (2017). Detecting Insurance Claims Fraud using Machine Learning Techniques. 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 1–6. https://doi.org/10.1109/ICCPCT.2017.8074258
Sadineni, P. K. (2020). Detection of Fraudulent Transactions in Credit Card Using Machine Learning Algorithms. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 659–660. https://doi.org/10.1109/I-SMAC49090.2020.9243545
Satyawan, M. D., Triani, N. N. A., Yanthi, M. D., Siregar, C. S., & Kusumaningsih, A. (2021). Accelerating the Role of Technology in Audit During Covid-19 Pandemic. Jurnal Akuntansi Multiparadigma, 12(1), 186–206. https://doi.org/10.21776/ub.jamal.2021.12.1.11
Singh, N., Lai, K., Vejvar, M., & Cheng, T. C. E. (2019). Data‐Driven Auditing: A Predictive Modeling Approach to Fraud Detection and Classification. Journal of Corporate Accounting & Finance, 30(3), 64–82. https://doi.org/10.1002/jcaf.22389
Singh, P., & Singh, M. (2015). Fraud Detection by Monitoring Customer Behavior and Activities. International Journal of Computer Applications, 111(11), 23–32. https://doi.org/10.5120/19584-1340
Soeprajitno, R. R. W. N. (2019). Artificial Intelligence (AI) Potencial Issue an Auditor’s Opinion? Jurnal Riset Akuntansi Dan Bisnis Airlangga, 4(1). https://doi.org/10.31093/jraba.v4i1.142
Syahputra, B. E., & Afnan, A. (2020). Fraud Detection: The Role of Big Data and Forensic Audit. Jurnal ASET (Akuntansi Riset), 12(2), 301–316. https://doi.org/doi.org/10.17509/jaset.v12i2.28939
Tang, X.-B., Liu, G.-C., Yang, J., & Wei, W. (2018). Knowledge-based Financial Statement Fraud Detection System: Based on an Ontology and a Decision Tree. Knowledge Organization, 45(3), 205–219. https://doi.org/10.5771/0943-7444-2018-3-205
Tarjo, & Herawati, N. (2015). Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud. Procedia - Social and Behavioral Sciences, 211, 924–930. https://doi.org/10.1016/j.sbspro.2015.11.122
Temponeras, G. S., Alexandropoulos, S.-A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Financial Fraudulent Statements Detection through a Deep Dense Artificial Neural Network. 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), 1–5. https://doi.org/10.1109/IISA.2019.8900741
The Institute of Internal Auditors. (2022). About Internal Audit. The Institute of Internal Auditors. https://www.theiia.org/en/about-us/about-internal-audit/
Thennakoon, A., Bhagyani, C., Premadasa, S., Mihiranga, S., & Kuruwitaarachchi, N. (2019). Real-Time Credit Card Fraud Detection Using Machine Learning. Proceedings of the 9th International Conference On Cloud Computing, Data Science and Engineering, Confluence 2019, 488–493. https://doi.org/10.1109/CONFLUENCE.2019.8776942
Triepels, R., Daniels, H., & Feelders, A. (2018). Data-Driven Fraud Detection in International Shipping. Expert Systems with Applications, 99, 193–202. https://doi.org/10.1016/j.eswa.2018.01.007
Vynokurova, O., Peleshko, D., Bondarenko, O., Ilyasov, V., Serzhantov, V., & Peleshko, M. (2020). Hybrid Machine Learning System for Solving Fraud Detection Tasks. 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 1–5. https://doi.org/10.1109/DSMP47368.2020.9204244
West, J., & Bhattacharya, M. (2016). Intelligent Financial Fraud Detection: A Comprehensive Review. Computers & Security, 57, 47–66. https://doi.org/10.1016/j.cose.2015.09.005
Widati, L. W., & Septy, F. (2008). Factors Affecting the Time Span of Financial Statements to the Public (Empirical Study on LQ 45 Companies Listed on the Indonesia Stock Exchange). Fokus Ekonomi (FE), 7(3), 173–187.
Zamzami, F., Faiz, I. A., & Mukhlis. (2013). Internal Audit: Concepts and Practices. Gadjah Mada University Press. https://ugmpress.ugm.ac.id/userfiles/product/daftar_isi/Audit_Internal.pdf
Copyright (c) 2022 Riset: Jurnal Aplikasi Ekonomi Akuntansi dan Bisnis
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.