• Wishmy Meinawa Ikhsan Polytechnic of State Finance STAN
  • Elzami Haqie Ednoer Polytechnic of State Finance STAN
  • Winanda Setyaning Kridantika Polytechnic of State Finance STAN
  • Amrie Firmansyah Polytechnic of State Finance STAN
Keywords: Artificial Intelligence, Data Analytic, Fraud, Internal Audit


This study aims to review the use of data analytics and artificial intelligence in fraud detection to support internal audits. This study employs a qualitative method with a scoping review approach. The research data comprised 24 online journal articles indexed by Scopus and Sinta, which were used as the basis for scoping reviews. The stages carried out in this study consisted of identifying research questions, using keywords, selecting literature, mapping the results of research data, and compiling a summary of research results. This study concludes that the fraud detection model based on data analytics and artificial intelligence has a high accuracy value in improving audit quality. This study indicates that the Indonesian Financial and Development Supervisory Agency needs to increase the use of technology, including data analytics and artificial intelligence, to detect fraud optimally.


Download data is not yet available.


ACFE. (2020). Report to The Nations on Occupational Fraud and Abuse: 2020 Global Fraud Study.

ACFE. (2022). Occupational Fraud 2022: A Report to The Nations.

ACFE Indonesia. (2020). Indonesian Fraud Survey 2019.

Albizri, A., Appelbaum, D., & Rizzotto, N. (2019). Evaluation of Financial Statements Fraud Detection Research: A Multi-Disciplinary Analysis. International Journal of Disclosure and Governance, 16(4), 206–241.

Alghofaili, Y., Albattah, A., & Rassam, M. A. (2020). A Financial Fraud Detection Model Based on LSTM Deep Learning Technique. Journal of Applied Security Research, 15(4), 498–516.

Arksey, H., & Malley, L. O. (2005). Scoping Studies: Towards A Methodological Framework. International Journal of Social Research Methodology, 8(1), 19–32.

Bao, Y., Ke, Bi., Li, B., Yu, Y. J., & Zhang, J. (2020). Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach. Journal of Accounting Research, 58(1), 199–235.

Button, M., Lewis, C., & Tapley, J. (2009). Fraud typologies and victims of fraud.

Chen, J., Tao, Y., Wang, H., & Chen, T. (2015). Big Data Based Fraud Risk Management at Alibaba. Journal of Finance and Data Science, 1(1), 1–10.

Craja, P., Kim, A., & Lessmann, S. (2020). Deep Learning For Detecting Financial Statement Fraud. Decision Support Systems, 139, 113421.

Dhieb, N., Ghazzai, H., Besbes, H., & Massoud, Y. (2020). A Secure AI-Driven Architecture for Automated Insurance Systems: Fraud Detection and Risk Measurement. IEEE Access, 8, 58546–58558.

Dong, W., Liao, S., & Zhang, Z. (2018). Leveraging Financial Social Media Data for Corporate Fraud Detection. Journal of Management Information Systems, 35(2), 461–487.

Fonna, N. (2019). Development of the Industrial Revolution 4.0 in Various Fields. Bogor: Guepedia.

Fortress, H. (2020). The Effect of Using Big Data Analytics on The Work of Auditors [Universitas Katolik Parahyangan].

Goel, S., Gangolly, J., Faerman, S. R., & Uzuner, O. (2010). Can Linguistic Predictors Detect Fraudulent Financial Filings? Journal of Emerging Technologies in Accounting, 7(1), 25–46.

Goel, S., & Uzuner, O. (2016). Do Sentiments Matter in Fraud Detection? Estimating Semantic Orientation of Annual Reports. Intelligent Systems in Accounting, Finance and Management, 23(3), 215–239.

Hakami, T. A., Rahmat, M. M., Yaacob, M. H., & Saleh, N. M. (2020). Fraud Detection Gap between Auditor and Fraud Detection Models: Evidence from Gulf Cooperation Council. Asian Journal of Accounting and Governance, 13, 1–13.

Handoko, B. L., Mulyawan, A. N., Tanuwijaya, J., & Tanciady, F. (2020). Big Data in Auditing for Tthe Future of Data Driven Fraud Detection. International Journal of Innovative Technology and Exploring Engineering, 9(3), 2902–2907.

Jan, C. (2018). An Effective Financial Statements Fraud Detection Model for the Sustainable Development of Financial Markets: Evidence from Taiwan. Sustainability, 10(2), 513.

Kovanen, A. (2020). Risks of Intelligent Automation and Their Impact on Internal Audit [Tampere University].

Kurniawati, G. N. (2020). Big Data Analytics and Its Uses for Your Business Development. DO Lab.

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (1955). A Proposal for The Dartmouth Summer Research Project on Artificial Intelligence. 1–13.

Muawanah, A., Adawiyah, D., Maisarah, I., Ali, M. R. A., & Widiastuti, N. P. E. (2022). Auditor Behavior Responding to the Emergence of Artificial Intelligence in the Audit Process. Jurnal Publikasi Ekonomi Dan Akuntansi …, 2(1), 52–60.

Mui, G. Y. (2018). Defining Auditor Expertise in Fraud Detection. Journal of Forensic and Investigative Accounting, 10(2), 168–186.

Mustika, N. I., Nenda, B., & Ramadhan, D. (2021). Machine Learning Algorithms in Fraud Detection: Case Study on Retail Consumer Financing Company. Asia Pacific Fraud Journal, 6(2), 213–221.

Naqvi, A. (2020). Artificial Intelligence for Audit, Forensic Accounting, and Valuation. New Jersey: John Wiley & Sons, Inc. (2022). What is Big Data? Oracle Cloud Infrastructure (OCI).

Pamungkas, U. D., & Firmansyah, A. (2021). How is The Regulation of Cryptocurrency Ownership by Companies Based on Financial Accounting Standards? Jurnal Ilmiah Akuntansi Kesatuan, 9(3), 489–510.

Patil, S., Nemade, V., & Soni, P. K. (2018). Predictive Modelling for Credit Card Fraud Detection Using Data Analytics. Procedia Computer Science, 132, 385–395.

Raj, S. B. E., & Portia, A. A. (2011). Analysis on Credit Card Fraud Detection Methods. 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), 152–156.

Richardson, V., Terrell, K., & Teeter, R. (2020). Data Analytics for Accounting (2nd ed.). New York: McGraw-Hill.

Rizki, A. A., Surjandari, I., & Wayasti, R. A. (2017). Data Mining Application to Detect Financial Fraud in Indonesia’s Public Companies. 2017 3rd International Conference on Science in Information Technology (ICSITech), 206–211.

Roy, R., & George, K. T. (2017). Detecting Insurance Claims Fraud using Machine Learning Techniques. 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), 1–6.

Sadineni, P. K. (2020). Detection of Fraudulent Transactions in Credit Card Using Machine Learning Algorithms. 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 659–660.

Satyawan, M. D., Triani, N. N. A., Yanthi, M. D., Siregar, C. S., & Kusumaningsih, A. (2021). Accelerating the Role of Technology in Audit During Covid-19 Pandemic. Jurnal Akuntansi Multiparadigma, 12(1), 186–206.

Singh, N., Lai, K., Vejvar, M., & Cheng, T. C. E. (2019). Data‐Driven Auditing: A Predictive Modeling Approach to Fraud Detection and Classification. Journal of Corporate Accounting & Finance, 30(3), 64–82.

Singh, P., & Singh, M. (2015). Fraud Detection by Monitoring Customer Behavior and Activities. International Journal of Computer Applications, 111(11), 23–32.

Soeprajitno, R. R. W. N. (2019). Artificial Intelligence (AI) Potencial Issue an Auditor’s Opinion? Jurnal Riset Akuntansi Dan Bisnis Airlangga, 4(1).

Syahputra, B. E., & Afnan, A. (2020). Fraud Detection: The Role of Big Data and Forensic Audit. Jurnal ASET (Akuntansi Riset), 12(2), 301–316.

Tang, X.-B., Liu, G.-C., Yang, J., & Wei, W. (2018). Knowledge-based Financial Statement Fraud Detection System: Based on an Ontology and a Decision Tree. Knowledge Organization, 45(3), 205–219.

Tarjo, & Herawati, N. (2015). Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud. Procedia - Social and Behavioral Sciences, 211, 924–930.

Temponeras, G. S., Alexandropoulos, S.-A. N., Kotsiantis, S. B., & Vrahatis, M. N. (2019). Financial Fraudulent Statements Detection through a Deep Dense Artificial Neural Network. 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), 1–5.

The Institute of Internal Auditors. (2022). About Internal Audit. The Institute of Internal Auditors.

Thennakoon, A., Bhagyani, C., Premadasa, S., Mihiranga, S., & Kuruwitaarachchi, N. (2019). Real-Time Credit Card Fraud Detection Using Machine Learning. Proceedings of the 9th International Conference On Cloud Computing, Data Science and Engineering, Confluence 2019, 488–493.

Triepels, R., Daniels, H., & Feelders, A. (2018). Data-Driven Fraud Detection in International Shipping. Expert Systems with Applications, 99, 193–202.

Vynokurova, O., Peleshko, D., Bondarenko, O., Ilyasov, V., Serzhantov, V., & Peleshko, M. (2020). Hybrid Machine Learning System for Solving Fraud Detection Tasks. 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP), 1–5.

West, J., & Bhattacharya, M. (2016). Intelligent Financial Fraud Detection: A Comprehensive Review. Computers & Security, 57, 47–66.

Widati, L. W., & Septy, F. (2008). Factors Affecting the Time Span of Financial Statements to the Public (Empirical Study on LQ 45 Companies Listed on the Indonesia Stock Exchange). Fokus Ekonomi (FE), 7(3), 173–187.

Zamzami, F., Faiz, I. A., & Mukhlis. (2013). Internal Audit: Concepts and Practices. Gadjah Mada University Press.

How to Cite
Ikhsan, W., Ednoer, E., Kridantika, W. and Firmansyah, A. 2022. FRAUD DETECTION AUTOMATION THROUGH DATA ANALYTICS AND ARTIFICIAL INTELLIGENCE. Riset: Jurnal Aplikasi Ekonomi Akuntansi dan Bisnis. 4, 2 (Sep. 2022), 103 - 119. DOI: